Impact of the cracks lost in the imaging process on computing linear elastic properties from 3D microtomographic images of Berea sandstone
نویسندگان
چکیده
With the current developments in imaging/computational techniques and resources, computational rock physics has been emerging as a new field of study. Properties of rocks are examined by carrying out extensive numerical simulations on rocks that have been digitized using high-resolution X-ray CT scans. The ultimate goal of computational rock physics is to supplement the traditional laboratory measurements, which are time consuming, with faster numerical simulations that allow the parameter space to be explored more thoroughly. We applied the finite-element method to compute the static effective elastic properties from 3D microtomographic images of Berea sandstone saturated with different fluids. From the computations, we found discrepancies between the numerical results and the laboratory measurements. The reason for such a problem is the loss of small features, such as fine cracks and micropores, in the digitized matrix during the imaging and aggregation process. We used a hybrid approach, combining the numerical computation and the effective media theories — the differential effective medium model and the Kuster-Toksöz model— to deduce the lost cracks by a very fast simulated annealing method. We analyzed the sensitivity of the inverted results — the distributions of crack aspect ratios and concentrations — to the clay content. We found that the inverted crack distribution is not so sensitive to clay content. Compared with the effect of cracks on the computed effective elastic properties, clay has only a secondary effect. Our approach can recover the lost cracks and is capable of predicting the effective elastic properties of the rocks from the microtomographic images for different fluid saturations. Compared with the traditional inversion schemes, based only on the effective media theories, this hybrid scheme has the advantage of utilizing the complex microstructures that are resolved in the imaging process, and it helps define the inversion space for crack distribution.
منابع مشابه
Estimate the Effective Elastic Properties of Digitized Porous Rocks by Inverting the Cracks Unresolved
Current imaging technique such as micro X-ray CT can provide us detailed 3D micro-structures of porous rocks that can be used in numerical simulation so as to predict elastic properties of rocks saturated with different fluids. However, limited by the resolution the imaging process can provide, we usually lose the small features of rocks such as cracks and micro-pores, consequences of which can...
متن کاملSensitivity Analysis of the Effect of Pore Structure and Geometry on Petrophysical and Electrical Properties of Tight Media: Random Network Modeling
Several methodologies published in the literature can be used to construct realistic pore networks for simple rocks, whereas in complex pore geometry formations, as formed in tight reservoirs, such a construction still remains a challenge. A basic understanding of pore structure and topology is essential to overcome the challenges associated with the pore scale modeling of tight porous media. A...
متن کاملComputation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment
Elastic property-porosity relationships are derived directly from microtomographic images. This is illustrated for a suite of four samples of Fontainebleau sandstone with porosities ranging from 7.5% to 22%. A finiteelement method is used to derive the elastic properties of digitized images. By estimating and minimizing several sources of numerical error, very accurate predictions of properties...
متن کاملEffect of freeze-thaw cycle on strength and rock strength parameters (A Lushan sandstone case study)
In an era of continued economic development around the globe, numerous rock-related projects including mining and gas/oil exploration are undertaken in regions with cold climates. Winters in the Iranian western and northwestern provinces are characterized by a high precipitation rate and a cold weather. Under such conditions, rocks are exposed to long freezing periods and several freeze-thaw (F...
متن کاملExperii\iental Deteri\iiination of Elastic Anisotropy of Berea Sandstone, Chicopee Shale and Chelmsford Granite
We use the ultrasonic transmission method to measure P-, SH-, and SV-wave velocities for Chelmsford Granite, Chicopee Shale, and Berea Sandstone in different directions up to 1000 bars confining pressure. The velocity measurements indicate that these three rocks are elastically anisotropic. The stiffness constants, dynamic Young's moduli, dynamic Poisson's ratios, and dynamic bulk moduli of the...
متن کامل